24,774 research outputs found

    The soft fermion dispersion relation at next-to-leading order in hot QED

    Get PDF
    We study next-to-leading order contributions to the soft static fermion dispersion relation in hot QED. We derive an expression for the complete next-to-leading order contribution to the retarded fermion self-energy. The real and imaginary parts of this expression give the next-to-leading order contributions to the mass and damping rate of the fermionic quasi-particle. Many of the terms that are expected to contribute according to the traditional power counting argument are actually subleading. We explain why the power counting method over estimates the contribution from these terms. For the electron damping rate in QED we obtain: γQED=e2T4π(2.70)\gamma_{QED} = \frac{e^2 T}{4\pi}(2.70). We check our method by calculating the next-to-leading order contribution to the damping rate for the case of QCD with two flavours and three coulours. Our result agrees with the result obtained previously in the literature. The numerical evaluation of the nlo contribution to the mass is left to a future publication.Comment: 15 pages, 5 figure

    On the metal-insulator transition in the two-chain model of correlated fermions

    Full text link
    The doping-induced metal-insulator transition in two-chain systems of correlated fermions is studied using a solvable limit of the t-J model and the fact that various strong- and weak-coupling limits of the two-chain model are in the same phase, i.e. have the same low-energy properties. It is shown that the Luttinger-liquid parameter K_\rho takes the universal value unity as the insulating state (half-filling) is approached, implying dominant d-type superconducting fluctuations, independently of the interaction strength. The crossover to insulating behavior of correlations as the transition is approached is discussed.Comment: 7 pages, 1 figur

    Collective Diffusion and a Random Energy Landscape

    Full text link
    Starting from a master equation in a quantum Hamiltonian form and a coupling to a heat bath we derive an evolution equation for a collective hopping process under the influence of a stochastic energy landscape. There results different equations in case of an arbitrary occupation number per lattice site or in a system under exclusion. Based on scaling arguments it will be demonstrated that both systems belong below the critical dimension dcd_c to the same universality class leading to anomalous diffusion in the long time limit. The dynamical exponent zz can be calculated by an ϵ=dc−d\epsilon = d_c-d expansion. Above the critical dimension we discuss the differences in the diffusion constant for sufficient high temperatures. For a random potential we find a higher mobility for systems with exclusion.Comment: 15 pages, no figure

    Spectral Properties near the Mott Transition in the One-Dimensional Hubbard Model

    Full text link
    Single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.Comment: 4 pages, 2 figure

    Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance

    Full text link
    Mott's metal-insulator transition at an interface due to band bending is studied by the density matrix renormalization group (DMRG). We show that the result can be recovered by a simple modification of the conventional Poisson's equation approach used in semi-conductor heterojunctions. A novel mechanism of colossal electroresistance is proposed, which incorporates the hysteretic behavior of the transition in higher dimensions.Comment: 5 pages, 3 figures, title change

    Spin Gap and Superconductivity in Weakly Coupled Ladders: Interladder One-particle vs. Two-particle Crossover

    Full text link
    Effects of the interladder one-particle hopping, t⊥t_{\perp}, on the low-energy asymptotics of a weakly coupled Hubbard ladder system have been studied, based on the perturbative renormalization-group approach. We found that for finite intraladder Hubbard repulsion, UU, there exists a crossover value of the interladder one-particle hopping, t⊥ct_{\perp c}. For 0<t⊥<t⊥c0<t_{\perp}<t_{\perp c}, the spin gap metal (SGM) phase of the isolated ladder transits at a finite transition temperature, TcT_{c}, to the d-wave superconducting (SCd) phase via a two-particle crossover. In the temperature region, T<TcT<T_{c}, interladder coherent Josephson tunneling of the Cooper pairs occurs, while the interladder coherent one-particle process is strongly suppressed. For t⊥c<t⊥t_{\perp c}<t_{\perp}, around a crossover temperature, TcrossT_{cross}, the system crosses over to the two-dimensional (2D) phase via a one-particle crossover. In the temperature region, T<TcrossT<T_{cross}, the interladdercoherent band motion occurs.Comment: 4 pages, 5 eps figures, uses jpsj.st

    A possible phase diagram of a t-J ladder model

    Full text link
    We investigate a t-J ladder model by numerical diagonalization method. By calculating correlation functions and assuming the Luttinger liquid relation, we obtained a possible phase diagram of the ground state as a function of J/t and electron density nn. We also found that behavior of correlation functions seems to consist with the prediction of Luttinger liquid relation. The result suggests that the superconducting phase appear in the region of J/t>∼0.5J/t \displaystyle{ \mathop{>}_{\sim}} 0.5 for high electron density and J/t>∼2.0J/t \displaystyle{ \mathop{>}_{\sim}} 2.0 for low electron density.Comment: Latex, 10 pages, figures available upon reques

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    Wigner Crystal in One Dimension

    Full text link
    A one--dimensional gas of electrons interacting with long--range Coulomb forces (V(r)≈1/rV(r) \approx 1/r) is investigated. The excitation spectrum consists of separate collective charge and spin modes, with the charge excitation energies in agreement with RPA calculations. For arbitrarily weak Coulomb repulsion density correlations at wavevector 4kF4k_F decay extremely slowly and are best described as those of a one--dimensional Wigner crystal. Pinning of the Wigner crystal then leads to the nonlinear transport properties characteristic of CDW. The results allow a consistent interpretation of the plasmon and spin excitations observed in one--dimensional semiconductor structures, and suggest an interpretation of some of the observed features in terms of ``spinons''. A possible explanation for nonlinear transport phenomena is given.Comment: 10 pages, RevTe
    • …
    corecore